Combining Superposition and Induction: a Practical Realization

Abdelkader Kersani and Nicolas Peltier

Laboratoire d'Informatique de Grenoble/CNRS CAPP team - ASAP project (ANR-09-BLAN-0407-01)

FROCOS 2013 - September 2013 - Nancy

Introductory example

$$\begin{array}{ll} \mathsf{length_at_least}(\mathit{I},\mathit{n}) & \Leftrightarrow & \mathit{n} = 0 \lor \\ & \exists \mathit{x},\mathit{l}',\mathit{n}' \, (\mathit{I} = \mathit{cons}(\mathit{x},\mathit{l}') \land \mathit{n} = \mathit{s}(\mathit{n}') \\ & \land \mathsf{length_at_least}(\mathit{l}',\mathit{n}')) \end{array}$$

$$\mathsf{nth}(x,l,n) \Leftrightarrow \exists l' \ l = cons(y,l') \land \\ (n = s(0) \land x = y) \lor \exists n' \ (n = s(n') \land \mathsf{nth}(x,l',n'))$$

Check that the following holds:

$$\forall \textit{n} \in \mathbb{N}, \forall \textit{I} \left(\mathsf{length_at_least}(\textit{I},\textit{n}) \land \textit{n} \neq 0 \Rightarrow \exists \textit{x} \, \mathsf{nth}(\textit{x},\textit{I},\textit{n}) \right)$$

Introductory example (2)

- ullet This problem cannot be stated in first-order logic $(n\in\mathbb{N})$
- An inductive property of the form $\forall n, I \exists x \phi$
- Must combine:
 - Standard equational reasoning with unification to:
 - Find the value of x (w.r.t. n, l)
 - Check that it indeed fulfills the desired property
 - Inductive reasoning on n

Introductory example (3)

 Straightforward approach: use standard proof procedures for first-order logic together with explicit induction schemes

$$(\psi(0) \land \forall n \, \psi(n) \Rightarrow \psi(s(n))) \Rightarrow \forall n \, \psi(n)$$

for some "well-chosen" formula ψ

 Our approach: try to discover automatically such inductive lemmata, by detecting cycles in the search space

Plan of the talk

- The language
- A proof procedure: superposition + loop detection
- A cycle detection algorithm
- Experimentations

The language

Clausal (first-order) logic + a (unique) arithmetic parameter n

- Two sorts ι (standard terms) and ω (natural numbers), with $0:\omega,s:\omega\to\omega$
- A special constant symbol n denoting a natural number
- Terms, (equational) literals and clauses are defined as usual do not contain the special symbol n
- n-clauses: constrained clauses of the form

$$[C \mid \mathcal{X}]$$

where:

- C is a clause
- \mathcal{X} is of the form $\bigwedge_{i=1}^k n = t_i$, where t_1, \ldots, t_k $(k \ge 0)$ are terms of sort ω

Semantics

- The special symbol n is interpreted as a term of the form $s^m(0)$ $(m \in \mathbb{N})$
- 0 and s are interpreted as 0 and successor function
- The other symbols are interpreted as usual
- $[C \mid \bigwedge_{i=1}^k n = t_i]$ holds in I iff for every substitution σ such that $I(n) = t_i \sigma$, $C \sigma$ holds in I

The language (2)

Remarks:

- A strict extension of first-order logic
- The constant n does not occur in the clauses A formula of the form f(n) = a must be written:

$$[f(x) = a \mid n = x]$$

Extension to formulæ with several parameters

A theoretical limitation

Theorem

The set of satisfiable sets of n-clauses is neither recursively enumerable (of course!) nor co-recursively enumerable

Depart from:

- First-order logic (unsatisfiability is semi-decidable)
- Rewrite-based inductive theorem proving (non-provability is semi-decidable)

The language (3)

Proposition

Every (non-tautological) n-clause is equivalent to an n-clause of the form $[C \mid \top]$ or $[C \mid n = t]$

Proof: $\bigwedge_{i=1}^k n = t_i \Leftrightarrow n = t_1 \land \bigwedge_{i=2}^k t_1 = t_i$, thus

$$[C \mid \bigwedge_{i=1}^{k} n = t_i] \Leftrightarrow [C\sigma \mid n = t_1\sigma]$$

where $\sigma = \mathsf{mgu}(t_1, \ldots, t_k)$ and

$$[C \mid \bigwedge_{i=1}^{k} n = t_i] \Leftrightarrow \top$$

if t_1, \ldots, t_k are not unifiable

Example

$$[f(x,y) = a \mid n = s(z) \land n = x \land n = y]$$

$$\longrightarrow [f(s(z), s(z)) = a \mid n = s(z)]$$

$$[f(x,y) = a \mid n = s(x) \land n = 0]$$

$$\longrightarrow \top$$

The language (4)

3 kinds of n-clauses:

- ullet Standard first-order clauses: express universal properties, not depending on the value of n
- ② $[C \mid n = s^k(0)]$: expresses a property that holds only if n has some specific value (n = k)
- **3** $[C[x] \mid n = s^k(x)]$: expresses a property C that holds for x = n k

The language (4)

3 kinds of *n*-clauses:

- Standard first-order clauses: express universal properties, not depending on the value of n rank \perp
- ② $[C \mid n = s^k(0)]$: expresses a property that holds only if n has some specific value (n = k) no rank
- ① $[C[x] \mid n = s^k(x)]$: expresses a property C that holds for x = n k rank k

S[i] denotes the set of *n*-clauses of rank i in S

Proof Procedure: Constrained superposition calculus

Superposition:

$$\frac{[C \lor t \bowtie s \mid \mathcal{X}], [D \lor u = v \mid \mathcal{Y}]}{[C \lor D \lor t[v]_{p} \bowtie s \mid \mathcal{X} \land \mathcal{Y}]\sigma}$$

If $\bowtie \in \{=, \neq\}$, $\sigma = \mathsf{mgu}(u, t|_p)$, $u\sigma \not\leq v\sigma$, $t\sigma \not\leq s\sigma$, $t|_p$ is not a variable, $(t \bowtie s)\sigma \not< C\sigma$, $(u = v)\sigma \not< D\sigma$.

Proof Procedure: Constrained superposition calculus (2)

Reflection:

$$\frac{[C \lor t \neq s \mid \mathcal{X}]}{[C \mid \mathcal{X}]\sigma}$$

If $\sigma = \text{mgu}(t, s)$, $(t \neq s)\sigma \not< C\sigma$

Factorisation:

If $\sigma = \text{mgu}(t, u)$, $t\sigma \nleq s\sigma$, $u\sigma \nleq v\sigma$, $(t = s)\sigma \nleq C\sigma$.

Proof Procedure

Remarks:

- The parameter n is abstracted away from the clauses: $f(n) = a \longrightarrow [f(x) = a \mid n = x]$
- Allows for a lazy instantiation of this parameter: $[f(x) = a \mid n = x], f(0) \neq a \vdash [\square \mid n = 0]$
- "Weakly" complete: if $S \models n \neq k$ (for some $k \in \mathbb{N}$) then $S \vdash [\square \mid n = k]$ (modulo subsumption)
- Not complete: no contradiction is derived in finite time (almost never terminates)

A trivial example

Prove the following:

$$p(0) \land \forall x \, p(x) \Rightarrow p(s(x)) \models \forall n \in \mathbb{N} \, p(n)$$

A trivial example (2)

Use the superposition calculus:

```
1 p(0) = \text{true}

2 p(x) \neq \text{true} \lor p(s(x)) = \text{true}

3 [p(x) \neq \text{true} \mid n = x]

4 [\Box \mid n = 0] (superposition, 1, 3)

5 [p(x) \neq \text{true} \mid n = s(x)] (superposition, 2, 3)

6 [\Box \mid n = s(0)] (superposition, 1, 5)

... [\Box \mid n = s^k(0)]
```

Uncomplete calculus

If S is unsatisfiable, we have:

$$\forall k \in \mathbb{N} S \vdash n \neq k$$

but not:

$$S \vdash \forall k \in \mathbb{N} \ n \neq k$$
$$(\equiv \bot)$$

A trivial example (3)

A "cycle" in the search space:

Clause 5 : $[p(x) \neq \text{true} \mid n = s(x)]$ is almost identical to Clause

 $3:[p(x) \neq \mathtt{true} \mid n = x]$, up to a translation on n.

Clause $3 \equiv p(n)$

Clause $5 \equiv p(n-1)$

Idea: detect those cycles and use them to prune the search space

•
$$S\downarrow_i \equiv S\{n \leftarrow n-i\}$$

•
$$[C \mid n=t] \longrightarrow [C \mid n-i=t]$$

•
$$S\downarrow_i \equiv S\{n \leftarrow n - i\}$$

•
$$[C \mid n=t] \longrightarrow [C \mid n-i=t]$$

•
$$S\downarrow_i \equiv S\{n \leftarrow n-i\}$$

•
$$[C \mid n=t] \longrightarrow [C \mid n=t+i]$$

•
$$S\downarrow_i \equiv S\{n \leftarrow n-i\}$$

•
$$[C \mid n = t] \longrightarrow [C \mid n = s^{i}(t)]$$

Second step:

Cycle Detection Rule

If there exists $S_{ind} \subseteq S$ such that:

- $S_{ind} \models n \neq I$, for every $I \in [i, i + j[$
- \circled{a} and $S_{ind} \models S_{ind} \downarrow_j$,

then $S \models n < i$ (i.e. $S \models [\Box \mid n = s^i(x)]$)

Proof: by "descente infinie"

- S is the whole search space (set of generated n-clauses)
- $S_{ind} \subseteq S$
- Decidable conditions are needed

- S is the whole search space (set of generated n-clauses)
- $S_{ind} \subseteq S$
- Decidable conditions are needed
 - Condition 1: Check that $[\Box \mid n=I]$ has been derived from S_{ind}
 - Condition 2: Check that some set of *n*-clauses S_{loop} has been derived from S_{ind} , with $S_{loop} = S_{ind} \downarrow_j$

- S is the whole search space (set of generated n-clauses)
- $S_{ind} \subseteq S$
- Decidable conditions are needed
 - Condition 1: Check that $[\Box \mid n = I]$ has been derived from S_{ind}
 - Condition 2: Check that some set of *n*-clauses S_{loop} has been derived from S_{ind} , with S_{loop} subsumes $S_{ind} \downarrow_i$

- S is the whole search space (set of generated n-clauses)
- $S_{ind} \subseteq S$
- Decidable conditions are needed
 - Condition 1: Check that $[\Box \mid n = I]$ has been derived from S_{ind}
 - Condition 2: Check that some set of n-clauses S_{loop} has been derived from S_{ind} , with S_{loop} subsumes $S_{ind} \downarrow_j$ (or any decidable entailment relation)

- S is the whole search space (set of generated n-clauses)
- $S_{ind} \subset S$
- Decidable conditions are needed
 - Condition 1: Check that $[\Box \mid n=I]$ has been derived from S_{ind}
 - Condition 2: Check that some set of n-clauses S_{loop} has been derived from S_{ind} , with S_{loop} subsumes $S_{ind} \downarrow_j$ (or any decidable entailment relation)
 - A further restriction: assume that all *n*-clauses in S_{ind} have the same rank i (or \perp)

Example (continued)

```
1 p(0) = \text{true}

2 p(x) \neq \text{true} \lor p(s(x)) = \text{true}

3 [p(x) \neq \text{true} \mid n = x]

4 [\Box \mid n = 0] (superposition, 1, 3)

5 [p(x) \neq \text{true} \mid n = s(x)] (superposition, 2, 3)

6 [\Box \mid n = s(0)] (superposition, 1, 5)

... [\Box \mid n = s^k(0)]
```

- $S_{ind} = \{1, 2, 3\}, S_{loop} = \{1, 2, 5\}, i = 0, j = 1$
- $[\Box \mid n = x]$ can be derived
- Unsatisfiability is detected

Cycle Detection in Practice

How to generate effectively the numbers i, j and the sets S_{ind} , S_{loop} ?

An algorithm to compute S_{ind} , S_{loop} (for fixed i, j) Properties:

- Sound: the computed sets S_{ind} , S_{loop} satisfy the desired property
- Complete: if some sets S_{ind} , S_{loop} satisfy the desired property, then the algorithm succeeds (but not necessarily with output S_{ind} , S_{loop})
- Efficient: polynomial w.r.t. the size of the set S
- Based on a greatest fixpoint computation

The Algorithm

```
S_0 \leftarrow \{n \neq k, k \in [i, i+i]\}
S_{ind} \leftarrow S[i]
if S_{ind} \not\vdash S_0 then
    return false
end if
S_{loop} \leftarrow \{ \mathcal{D} \in S[i+j] \mid S_{ind} \vdash \{ \mathcal{D} \} \}
while \exists \mathcal{C} \in S_{ind} \mid S_{loop} \not\supset \{\mathcal{C} \downarrow_i\} do
    S_{ind} \leftarrow S_{ind} \setminus \{C\}
    if S_{ind} \not\vdash S_0 then
        return false
    end if
    Remove from S_{loop} all the n-clauses \mathcal{D} s.t. S_{ind} \not\vdash \{\mathcal{D}\}
end while
return true
```

Experimentations

Implemented in Prover9

Use n-clauses to model schemata of formulæ

- Formulæ depending on some parameter n
- Constructed using special connectives $\bigvee_{i=a}^b \phi$ and $\bigwedge_{i=a}^b \phi$

Example: *n*-bit adder

$$Sum_i(p,q,c,r) \stackrel{\mathsf{def}}{=} r_i \Leftrightarrow (p_i \oplus q_i) \oplus c_i$$

$$Carry_i(p,q,c) \stackrel{\mathsf{def}}{=} c_{i+1} \Leftrightarrow (p_i \wedge q_i) \vee (c_i \wedge p_i) \vee (c_i \wedge q_i)$$

$$\textit{Adder}(p,q,c,r) \stackrel{\mathsf{def}}{=} \bigwedge_{i=1}^{n} \textit{Sum}_{i}(p,q,c,r) \land \bigwedge_{i=1}^{n} \textit{Carry}_{i}(p,q,c) \land \neg c_{1}$$

Translation into clausal form (1)

$$\bigvee_{i=0}^n \phi \longrightarrow p(n)$$

with:

$$p(0) \Leftrightarrow \phi\{i \to 0\}$$

$$\forall x \, p(x+1) \Leftrightarrow \phi\{i \to x+1\} \vee p(x)$$

$$\bigvee_{i=a}^{n+b} \phi \longrightarrow \bigvee_{i=0}^{n} (\phi \wedge q_i) \vee \phi \{i \rightarrow n+1\} \vee \ldots \vee \phi \{i \rightarrow n+b\}$$

with:

$$eg q(0) \wedge \ldots \wedge
eg q(a-1) \wedge q(a)$$
 $eg x q(x) o q(s(x))$

Translation into clausal form (E)

Eliminate terms of the form s(t) where t is not a variable:

$$p_{s(t)} \longrightarrow p'_t$$

with:

$$\forall x p_{s(x)} \Leftrightarrow p_x$$

Experimentations

Example	Time	# of calls	# clauses
Example	Tille	"	# Clauses
		to Cycle ₂	
Ripple-carry adder $(A+0=A)$	0.48	336	33833
Ripple-carry adder (commutativity)	0.03	102	2003
Ripple-carry adder (associativity)	0.09	207	10154
Unicity of the result (ripple-carry)	0.7	150	50901
Carry-propagate adder (commutativity)	0.02	14	1980
Carry-propagate adder (associativity)	0.01	20	3972
Equivalence between the ripple-carry			
and the carry-propagate adders	0.03	14	1980
Totality of $<$ $(n_1 \ge n_2 \lor n_1 < n_2)$	0.01	47	185

Summary

- A technique to combine superposition calculus and inductive theorem proving
- Automated discovery of (some) inductive invariants
- Completeness can be ensured in some cases (CADE), e.g. if the formulæ contain no non-arithmetic variable (schemata of propositional formulæ)
- An implementation based on Prover9

Future Work

- Incremental loop detection
- Heuristics to "guess" the values of i and j or to trigger the application of the loop detection rule
- Improve the implementation, more experimentations