
Combining Superposition and Induction: a Practical
Realization

Abdelkader Kersani and Nicolas Peltier

Laboratoire d'Informatique de Grenoble/CNRS
CAPP team - ASAP project (ANR-09-BLAN-0407-01)

FROCOS 2013 - September 2013 - Nancy

Abdelkader Kersani and Nicolas Peltier Combining Superposition and Induction

Introductory example

length_at_least(l , n) ⇔ n = 0∨
∃x , l ′, n′ (l = cons(x , l ′) ∧ n = s(n′)
∧length_at_least(l ′, n′))

nth(x , l , n) ⇔ ∃l ′ l = cons(y , l ′)∧
(n = s(0) ∧ x = y) ∨ ∃n′ (n = s(n′) ∧ nth(x , l ′, n′))

Check that the following holds:

∀n ∈ N, ∀l (length_at_least(l , n) ∧ n 6= 0⇒ ∃x nth(x , l , n))

Abdelkader Kersani and Nicolas Peltier Combining Superposition and Induction

Introductory example (2)

This problem cannot be stated in �rst-order logic (n ∈ N)
An inductive property of the form ∀n, l ∃x φ
Must combine:

Standard equational reasoning with uni�cation to:
1 Find the value of x (w.r.t. n, l)
2 Check that it indeed ful�lls the desired property

Inductive reasoning on n

Abdelkader Kersani and Nicolas Peltier Combining Superposition and Induction

Introductory example (3)

Straightforward approach: use standard proof procedures for

�rst-order logic together with explicit induction schemes

(ψ(0) ∧ ∀nψ(n)⇒ ψ(s(n)))⇒ ∀nψ(n)

for some �well-chosen� formula ψ

Our approach: try to discover automatically such inductive

lemmata, by detecting cycles in the search space

Abdelkader Kersani and Nicolas Peltier Combining Superposition and Induction

Plan of the talk

The language

A proof procedure: superposition + loop detection

A cycle detection algorithm

Experimentations

Abdelkader Kersani and Nicolas Peltier Combining Superposition and Induction

The language

Clausal (�rst-order) logic + a (unique) arithmetic parameter n

Two sorts ι (standard terms) and ω (natural numbers), with

0 : ω, s : ω → ω

A special constant symbol n denoting a natural number

Terms, (equational) literals and clauses are de�ned as usual

do not contain the special symbol n

n-clauses: constrained clauses of the form

[C | X]

where:

C is a clause
X is of the form

∧k
i=1

n = ti , where t1, . . . , tk (k ≥ 0) are
terms of sort ω

Abdelkader Kersani and Nicolas Peltier Combining Superposition and Induction

Semantics

The special symbol n is interpreted as a term of the form

sm(0) (m ∈ N)
0 and s are interpreted as 0 and successor function

The other symbols are interpreted as usual

[C |
∧k

i=1 n = ti] holds in I i� for every substitution σ such

that I (n) = tiσ, Cσ holds in I

Abdelkader Kersani and Nicolas Peltier Combining Superposition and Induction

The language (2)

Remarks:

A strict extension of �rst-order logic

The constant n does not occur in the clauses

A formula of the form f (n) = a must be written:

[f (x) = a | n = x]

Extension to formulæ with several parameters

Abdelkader Kersani and Nicolas Peltier Combining Superposition and Induction

A theoretical limitation

Theorem

The set of satis�able sets of n-clauses is neither recursively
enumerable (of course !) nor co-recursively enumerable

Depart from:

First-order logic (unsatis�ability is semi-decidable)

Rewrite-based inductive theorem proving (non-provability is

semi-decidable)

Abdelkader Kersani and Nicolas Peltier Combining Superposition and Induction

The language (3)

Proposition

Every (non-tautological) n-clause is equivalent to an n-clause of the
form [C | >] or [C | n = t]

Proof:
∧k

i=1 n = ti ⇔ n = t1 ∧
∧k

i=2 t1 = ti , thus

[C |
k∧

i=1

n = ti]⇔ [Cσ | n = t1σ]

where σ = mgu(t1, . . . , tk) and

[C |
k∧

i=1

n = ti]⇔ >

if t1, . . . , tk are not uni�able

Abdelkader Kersani and Nicolas Peltier Combining Superposition and Induction

Example

[f (x , y) = a | n = s(z) ∧ n = x ∧ n = y]

−→ [f (s(z), s(z)) = a | n = s(z)]

[f (x , y) = a | n = s(x) ∧ n = 0]

−→ >

Abdelkader Kersani and Nicolas Peltier Combining Superposition and Induction

The language (4)

3 kinds of n-clauses:

1 Standard �rst-order clauses: express universal properties, not

depending on the value of n

2 [C | n = sk(0)]: expresses a property that holds only if n has

some speci�c value (n = k)

3 [C [x] | n = sk(x)]: expresses a property C that holds for

x = n − k

Abdelkader Kersani and Nicolas Peltier Combining Superposition and Induction

The language (4)

3 kinds of n-clauses:

1 Standard �rst-order clauses: express universal properties, not

depending on the value of n rank ⊥
2 [C | n = sk(0)]: expresses a property that holds only if n has

some speci�c value (n = k) no rank

3 [C [x] | n = sk(x)]: expresses a property C that holds for

x = n − k rank k

S [i] denotes the set of n-clauses of rank i in S

Abdelkader Kersani and Nicolas Peltier Combining Superposition and Induction

Proof Procedure: Constrained superposition calculus

Superposition:

[C ∨ t ./ s | X], [D ∨ u = v | Y]
[C ∨ D ∨ t[v]p ./ s | X ∧ Y]σ

If ./∈ {=, 6=}, σ = mgu(u, t|p), uσ 6≤ vσ, tσ 6≤ sσ, t|p is not a

variable, (t ./ s)σ 6< Cσ, (u = v)σ 6< Dσ.

Abdelkader Kersani and Nicolas Peltier Combining Superposition and Induction

Proof Procedure: Constrained superposition calculus (2)

Re�ection:

[C ∨ t 6= s | X]
[C | X]σ

If σ = mgu(t, s), (t 6= s)σ 6< Cσ

Factorisation:

[C ∨ t = s ∨ u = v | X]
[C ∨ s 6= v ∨ t = s | X]σ

If σ = mgu(t, u), tσ 6< sσ, uσ 6< vσ, (t = s)σ 6< Cσ.

Abdelkader Kersani and Nicolas Peltier Combining Superposition and Induction

Proof Procedure

Remarks:

The parameter n is abstracted away from the clauses:

f (n) = a −→ [f (x) = a | n = x]

Allows for a lazy instantiation of this parameter:

[f (x) = a | n = x], f (0) 6= a ` [2 | n = 0]

�Weakly� complete: if S |= n 6= k (for some k ∈ N) then
S ` [2 | n = k] (modulo subsumption)

Not complete: no contradiction is derived in �nite time

(almost never terminates)

Abdelkader Kersani and Nicolas Peltier Combining Superposition and Induction

A trivial example

Prove the following:

p(0) ∧ ∀x p(x)⇒ p(s(x)) |= ∀n ∈ N p(n)

Abdelkader Kersani and Nicolas Peltier Combining Superposition and Induction

A trivial example (2)

Use the superposition calculus:

1 p(0) = true

2 p(x) 6= true ∨ p(s(x)) = true

3 [p(x) 6= true | n = x]
4 [2 | n = 0] (superposition, 1, 3)

5 [p(x) 6= true | n = s(x)] (superposition, 2, 3)

6 [2 | n = s(0)] (superposition, 1, 5)

.

[2 | n = sk(0)]

Abdelkader Kersani and Nicolas Peltier Combining Superposition and Induction

Uncomplete calculus

If S is unsatis�able, we have:

∀k ∈ N S ` n 6= k

but not:

S ` ∀k ∈ N n 6= k

(≡ ⊥)

Abdelkader Kersani and Nicolas Peltier Combining Superposition and Induction

A trivial example (3)

A �cycle� in the search space:

Clause 5 : [p(x) 6= true | n = s(x)] is almost identical to Clause

3 : [p(x) 6= true | n = x], up to a translation on n.
Clause 3 ≡ p(n)
Clause 5 ≡ p(n − 1)
Idea: detect those cycles and use them to prune the search space

Abdelkader Kersani and Nicolas Peltier Combining Superposition and Induction

Cycle Detection

First step: Formalize the notion of translation

S↓i≡ S{n← n − i}
[C | n = t] −→ [C | n − i = t]

Abdelkader Kersani and Nicolas Peltier Combining Superposition and Induction

Cycle Detection

First step: Formalize the notion of translation

S↓i≡ S{n← n − i}
[C | n = t] −→ [C | n − i = t]

Abdelkader Kersani and Nicolas Peltier Combining Superposition and Induction

Cycle Detection

First step: Formalize the notion of translation

S↓i≡ S{n← n − i}
[C | n = t] −→ [C | n = t + i]

Abdelkader Kersani and Nicolas Peltier Combining Superposition and Induction

Cycle Detection

First step: Formalize the notion of translation

S↓i≡ S{n← n − i}
[C | n = t] −→ [C | n = s i (t)]

Abdelkader Kersani and Nicolas Peltier Combining Superposition and Induction

Cycle Detection

Second step:

Cycle Detection Rule

If there exists Sind ⊆ S such that:

1 Sind |= n 6= l , for every l ∈ [i , i + j [

2 and Sind |= Sind↓j ,
then S |= n < i (i.e. S |= [2 | n = s i (x)])

Proof: by �descente in�nie�

Abdelkader Kersani and Nicolas Peltier Combining Superposition and Induction

Cycle Detection

In practice:

S is the whole search space (set of generated n-clauses)

Sind ⊆ S

Decidable conditions are needed

Abdelkader Kersani and Nicolas Peltier Combining Superposition and Induction

Cycle Detection

In practice:

S is the whole search space (set of generated n-clauses)

Sind ⊆ S

Decidable conditions are needed

Condition 1: Check that [2 | n = l] has been derived from Sind
Condition 2: Check that some set of n-clauses Sloop has been
derived from Sind , with Sloop = Sind↓j

Abdelkader Kersani and Nicolas Peltier Combining Superposition and Induction

Cycle Detection

In practice:

S is the whole search space (set of generated n-clauses)

Sind ⊆ S

Decidable conditions are needed

Condition 1: Check that [2 | n = l] has been derived from Sind
Condition 2: Check that some set of n-clauses Sloop has been
derived from Sind , with Sloop subsumes Sind↓j

Abdelkader Kersani and Nicolas Peltier Combining Superposition and Induction

Cycle Detection

In practice:

S is the whole search space (set of generated n-clauses)

Sind ⊆ S

Decidable conditions are needed

Condition 1: Check that [2 | n = l] has been derived from Sind
Condition 2: Check that some set of n-clauses Sloop has been
derived from Sind , with Sloop subsumes Sind↓j (or any
decidable entailment relation)

Abdelkader Kersani and Nicolas Peltier Combining Superposition and Induction

Cycle Detection

In practice:

S is the whole search space (set of generated n-clauses)

Sind ⊆ S

Decidable conditions are needed

Condition 1: Check that [2 | n = l] has been derived from Sind
Condition 2: Check that some set of n-clauses Sloop has been
derived from Sind , with Sloop subsumes Sind↓j (or any
decidable entailment relation)
A further restriction: assume that all n-clauses in Sind have the
same rank i (or ⊥)

Abdelkader Kersani and Nicolas Peltier Combining Superposition and Induction

Example (continued)

1 p(0) = true

2 p(x) 6= true ∨ p(s(x)) = true

3 [p(x) 6= true | n = x]
4 [2 | n = 0] (superposition, 1, 3)

5 [p(x) 6= true | n = s(x)] (superposition, 2, 3)

6 [2 | n = s(0)] (superposition, 1, 5)

.

[2 | n = sk(0)]

Sind = {1, 2, 3}, Sloop = {1, 2, 5}, i = 0, j = 1

[2 | n = x] can be derived

Unsatis�ability is detected

Abdelkader Kersani and Nicolas Peltier Combining Superposition and Induction

Cycle Detection in Practice

How to generate e�ectively the numbers i , j and the sets Sind ,Sloop
?

An algorithm to compute Sind ,Sloop (for �xed i , j)
Properties:

Sound: the computed sets Sind , Sloop satisfy the desired

property

Complete: if some sets Sind ,Sloop satisfy the desired property,

then the algorithm succeeds (but not necessarily with output

Sind , Sloop)

E�cient: polynomial w.r.t. the size of the set S

Based on a greatest �xpoint computation

Abdelkader Kersani and Nicolas Peltier Combining Superposition and Induction

The Algorithm

S0 ← {n 6= k , k ∈ [i , i + j [}
Sind ← S [i]
if Sind 6` S0 then

return false

end if

Sloop ← {D ∈ S [i + j] | Sind ` {D}}
while ∃C ∈ Sind | Sloop 6⊇ {C↓j} do
Sind ← Sind \ {C}
if Sind 6` S0 then

return false

end if

Remove from Sloop all the n-clauses D s.t. Sind 6` {D}
end while

return true

Abdelkader Kersani and Nicolas Peltier Combining Superposition and Induction

Experimentations

Implemented in Prover9

Use n-clauses to model schemata of formulæ

Formulæ depending on some parameter n

Constructed using special connectives
∨b

i=a φ and
∧b

i=a φ

Example: n-bit adder

Sumi (p, q, c , r)
def
= ri ⇔ (pi ⊕ qi)⊕ ci

Carryi (p, q, c)
def
= ci+1 ⇔ (pi ∧ qi) ∨ (ci ∧ pi) ∨ (ci ∧ qi)

Adder(p, q, c , r)
def
=

n∧
i=1

Sumi (p, q, c , r) ∧
n∧

i=1

Carryi (p, q, c) ∧ ¬c1

Abdelkader Kersani and Nicolas Peltier Combining Superposition and Induction

Translation into clausal form (1)

n∨
i=0

φ −→ p(n)

with:

p(0)⇔ φ{i → 0}

∀x p(x + 1)⇔ φ{i → x + 1} ∨ p(x)

n+b∨
i=a

φ −→
n∨

i=0

(φ ∧ qi) ∨ φ{i → n + 1} ∨ . . . ∨ φ{i → n + b}

with:

¬q(0) ∧ . . . ∧ ¬q(a− 1) ∧ q(a)

∀x q(x)→ q(s(x))

Abdelkader Kersani and Nicolas Peltier Combining Superposition and Induction

Translation into clausal form (E)

Eliminate terms of the form s(t) where t is not a variable:

ps(t) −→ p′t

with:

∀x ps(x) ⇔ px

Abdelkader Kersani and Nicolas Peltier Combining Superposition and Induction

Experimentations

Example Time # of calls # clauses
to Cycle2

Ripple-carry adder (A+ 0 = A) 0.48 336 33833

Ripple-carry adder (commutativity) 0.03 102 2003

Ripple-carry adder (associativity) 0.09 207 10154

Unicity of the result (ripple-carry) 0.7 150 50901

Carry-propagate adder (commutativity) 0.02 14 1980

Carry-propagate adder (associativity) 0.01 20 3972

Equivalence between the ripple-carry
and the carry-propagate adders 0.03 14 1980

Totality of < (n1 ≥ n2 ∨ n1 < n2) 0.01 47 185

Abdelkader Kersani and Nicolas Peltier Combining Superposition and Induction

Summary

A technique to combine superposition calculus and inductive

theorem proving

Automated discovery of (some) inductive invariants

Completeness can be ensured in some cases (CADE), e.g. if

the formulæ contain no non-arithmetic variable (schemata of

propositional formulæ)

An implementation based on Prover9

Abdelkader Kersani and Nicolas Peltier Combining Superposition and Induction

Future Work

Incremental loop detection

Heuristics to �guess� the values of i and j or to trigger the

application of the loop detection rule

Improve the implementation, more experimentations

Abdelkader Kersani and Nicolas Peltier Combining Superposition and Induction

