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Termination of Simple Linear Programs

x := a;
while u · x 6= 0 do

x := M · x;

Termination Problem

Instance: 〈 a; u; M 〉
Question: Does this program terminate?
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Termination of Simple Linear Programs

Much work on this and related problems in the literature over the
last three decades:

Manna, Pnueli, Kannan, Lipton, Sagiv, Podelski,
Rybalchenko, Cook, Dershowitz, Tiwari, Braverman, Kovács,
Ben-Amram, Genaim, . . .

Approaches include:

linear ranking functions
size-change termination methods
spectral techniques
. . .

Tools include:



Reachability/Invariance/Approximation in Markov Chains

M: Markov chain over states s1, . . . , sk

Is it the case, say, that starting in state s1, ultimately I am in
state sk with probability at least 1/2 ?

Does there exist T such that, for all n ≥ T
Prob(‘being in sk after n steps’) ≥ 1/2 ?

(1, 0, 0, 0) ·M =
(0, 0.5, 0.2, 0.3) ·M =

(0.16, 0, 0.5, 0.34) ·M =
(0.318, 0.08, 0.032, 0.57) ·M =

(0.13, 0.159, 0.1436, 0.5374) ·M =
(0.18528, 0.065, 0.185, 0.51472) ·M =

(0.205444, 0.09264, 0.102056, 0.50386) ·M =
(0.171, 0.102722, 0.133729, 0.500149) ·M =

(0.185374, 0.0855, 0.136922, 0.500004)



Reachability/Invariance/Approximation in Markov Chains

M: Markov chain over states s1, . . . , sk

Is it the case, say, that starting in state s1, ultimately I am in
state sk with probability at least 1/2 ?

Does there exist T such that, for all n ≥ T
Prob(‘being in sk after n steps’) ≥ 1/2 ?

(1, 0, 0, 0) ·M =
(0, 0.5, 0.2, 0.3) ·M =

(0.16, 0, 0.5, 0.34) ·M =
(0.318, 0.08, 0.032, 0.57) ·M =

(0.13, 0.159, 0.1436, 0.5374) ·M =
(0.18528, 0.065, 0.185, 0.51472) ·M =

(0.205444, 0.09264, 0.102056, 0.50386) ·M =
(0.171, 0.102722, 0.133729, 0.500149) ·M =

(0.185374, 0.0855, 0.136922, 0.500004)



Reachability/Invariance/Approximation in Markov Chains

M: Markov chain over states s1, . . . , sk

Is it the case, say, that starting in state s1, ultimately I am in
state sk with probability at least 1/2 ?

Does there exist T such that, for all n ≥ T
Prob(‘being in sk after n steps’) ≥ 1/2 ?

(1, 0, 0, 0) ·M =
(0, 0.5, 0.2, 0.3) ·M =

(0.16, 0, 0.5, 0.34) ·M =
(0.318, 0.08, 0.032, 0.57) ·M =

(0.13, 0.159, 0.1436, 0.5374) ·M =
(0.18528, 0.065, 0.185, 0.51472) ·M =

(0.205444, 0.09264, 0.102056, 0.50386) ·M =
(0.171, 0.102722, 0.133729, 0.500149) ·M =

(0.185374, 0.0855, 0.136922, 0.500004)



Reachability/Invariance/Approximation in Markov Chains

M: Markov chain over states s1, . . . , sk

Is it the case, say, that starting in state s1, ultimately I am in
state sk with probability at least 1/2 ?

Does there exist T such that, for all n ≥ T
Prob(‘being in sk after n steps’) ≥ 1/2 ?

(1, 0, 0, 0)

·M =
(0, 0.5, 0.2, 0.3) ·M =

(0.16, 0, 0.5, 0.34) ·M =
(0.318, 0.08, 0.032, 0.57) ·M =

(0.13, 0.159, 0.1436, 0.5374) ·M =
(0.18528, 0.065, 0.185, 0.51472) ·M =

(0.205444, 0.09264, 0.102056, 0.50386) ·M =
(0.171, 0.102722, 0.133729, 0.500149) ·M =

(0.185374, 0.0855, 0.136922, 0.500004)



Reachability/Invariance/Approximation in Markov Chains

M: Markov chain over states s1, . . . , sk

Is it the case, say, that starting in state s1, ultimately I am in
state sk with probability at least 1/2 ?

Does there exist T such that, for all n ≥ T
Prob(‘being in sk after n steps’) ≥ 1/2 ?

(1, 0, 0, 0) ·M =
(0, 0.5, 0.2, 0.3)

·M =
(0.16, 0, 0.5, 0.34) ·M =

(0.318, 0.08, 0.032, 0.57) ·M =
(0.13, 0.159, 0.1436, 0.5374) ·M =

(0.18528, 0.065, 0.185, 0.51472) ·M =
(0.205444, 0.09264, 0.102056, 0.50386) ·M =

(0.171, 0.102722, 0.133729, 0.500149) ·M =
(0.185374, 0.0855, 0.136922, 0.500004)



Reachability/Invariance/Approximation in Markov Chains

M: Markov chain over states s1, . . . , sk

Is it the case, say, that starting in state s1, ultimately I am in
state sk with probability at least 1/2 ?

Does there exist T such that, for all n ≥ T
Prob(‘being in sk after n steps’) ≥ 1/2 ?

(1, 0, 0, 0) ·M =
(0, 0.5, 0.2, 0.3) ·M =

(0.16, 0, 0.5, 0.34)

·M =
(0.318, 0.08, 0.032, 0.57) ·M =

(0.13, 0.159, 0.1436, 0.5374) ·M =
(0.18528, 0.065, 0.185, 0.51472) ·M =

(0.205444, 0.09264, 0.102056, 0.50386) ·M =
(0.171, 0.102722, 0.133729, 0.500149) ·M =

(0.185374, 0.0855, 0.136922, 0.500004)



Reachability/Invariance/Approximation in Markov Chains

M: Markov chain over states s1, . . . , sk

Is it the case, say, that starting in state s1, ultimately I am in
state sk with probability at least 1/2 ?

Does there exist T such that, for all n ≥ T
Prob(‘being in sk after n steps’) ≥ 1/2 ?

(1, 0, 0, 0) ·M =
(0, 0.5, 0.2, 0.3) ·M =

(0.16, 0, 0.5, 0.34) ·M =
(0.318, 0.08, 0.032, 0.57)

·M =
(0.13, 0.159, 0.1436, 0.5374) ·M =

(0.18528, 0.065, 0.185, 0.51472) ·M =
(0.205444, 0.09264, 0.102056, 0.50386) ·M =

(0.171, 0.102722, 0.133729, 0.500149) ·M =
(0.185374, 0.0855, 0.136922, 0.500004)



Reachability/Invariance/Approximation in Markov Chains

M: Markov chain over states s1, . . . , sk

Is it the case, say, that starting in state s1, ultimately I am in
state sk with probability at least 1/2 ?

Does there exist T such that, for all n ≥ T
Prob(‘being in sk after n steps’) ≥ 1/2 ?

(1, 0, 0, 0) ·M =
(0, 0.5, 0.2, 0.3) ·M =

(0.16, 0, 0.5, 0.34) ·M =
(0.318, 0.08, 0.032, 0.57) ·M =

(0.13, 0.159, 0.1436, 0.5374)

·M =
(0.18528, 0.065, 0.185, 0.51472) ·M =

(0.205444, 0.09264, 0.102056, 0.50386) ·M =
(0.171, 0.102722, 0.133729, 0.500149) ·M =

(0.185374, 0.0855, 0.136922, 0.500004)



Reachability/Invariance/Approximation in Markov Chains

M: Markov chain over states s1, . . . , sk

Is it the case, say, that starting in state s1, ultimately I am in
state sk with probability at least 1/2 ?

Does there exist T such that, for all n ≥ T
Prob(‘being in sk after n steps’) ≥ 1/2 ?

(1, 0, 0, 0) ·M =
(0, 0.5, 0.2, 0.3) ·M =

(0.16, 0, 0.5, 0.34) ·M =
(0.318, 0.08, 0.032, 0.57) ·M =

(0.13, 0.159, 0.1436, 0.5374) ·M =
(0.18528, 0.065, 0.185, 0.51472)

·M =
(0.205444, 0.09264, 0.102056, 0.50386) ·M =

(0.171, 0.102722, 0.133729, 0.500149) ·M =
(0.185374, 0.0855, 0.136922, 0.500004)



Reachability/Invariance/Approximation in Markov Chains

M: Markov chain over states s1, . . . , sk

Is it the case, say, that starting in state s1, ultimately I am in
state sk with probability at least 1/2 ?

Does there exist T such that, for all n ≥ T
Prob(‘being in sk after n steps’) ≥ 1/2 ?

(1, 0, 0, 0) ·M =
(0, 0.5, 0.2, 0.3) ·M =

(0.16, 0, 0.5, 0.34) ·M =
(0.318, 0.08, 0.032, 0.57) ·M =

(0.13, 0.159, 0.1436, 0.5374) ·M =
(0.18528, 0.065, 0.185, 0.51472) ·M =

(0.205444, 0.09264, 0.102056, 0.50386)

·M =
(0.171, 0.102722, 0.133729, 0.500149) ·M =

(0.185374, 0.0855, 0.136922, 0.500004)



Reachability/Invariance/Approximation in Markov Chains

M: Markov chain over states s1, . . . , sk

Is it the case, say, that starting in state s1, ultimately I am in
state sk with probability at least 1/2 ?

Does there exist T such that, for all n ≥ T
Prob(‘being in sk after n steps’) ≥ 1/2 ?

(1, 0, 0, 0) ·M =
(0, 0.5, 0.2, 0.3) ·M =

(0.16, 0, 0.5, 0.34) ·M =
(0.318, 0.08, 0.032, 0.57) ·M =

(0.13, 0.159, 0.1436, 0.5374) ·M =
(0.18528, 0.065, 0.185, 0.51472) ·M =

(0.205444, 0.09264, 0.102056, 0.50386) ·M =
(0.171, 0.102722, 0.133729, 0.500149)

·M =
(0.185374, 0.0855, 0.136922, 0.500004)



Reachability/Invariance/Approximation in Markov Chains

M: Markov chain over states s1, . . . , sk

Is it the case, say, that starting in state s1, ultimately I am in
state sk with probability at least 1/2 ?

Does there exist T such that, for all n ≥ T
Prob(‘being in sk after n steps’) ≥ 1/2 ?

(1, 0, 0, 0) ·M =
(0, 0.5, 0.2, 0.3) ·M =

(0.16, 0, 0.5, 0.34) ·M =
(0.318, 0.08, 0.032, 0.57) ·M =

(0.13, 0.159, 0.1436, 0.5374) ·M =
(0.18528, 0.065, 0.185, 0.51472) ·M =

(0.205444, 0.09264, 0.102056, 0.50386) ·M =
(0.171, 0.102722, 0.133729, 0.500149) ·M =

(0.185374, 0.0855, 0.136922, 0.500004)



Reachability/Invariance/Approximation in Markov Chains

M: Markov chain over states s1, . . . , sk

Is it the case, say, that starting in state s1, ultimately I am in
state sk with probability at least 1/2 ?

Does there exist T such that, for all n ≥ T
Prob(‘being in sk after n steps’) ≥ 1/2 ?

(1, 0, 0, 0) ·M =
(0, 0.5, 0.2, 0.3) ·M =

(0.16, 0, 0.5, 0.34) ·M =
(0.318, 0.08, 0.032, 0.57) ·M =

(0.13, 0.159, 0.1436, 0.5374) ·M =
(0.18528, 0.065, 0.185, 0.51472) ·M =

(0.205444, 0.09264, 0.102056, 0.50386) ·M =
(0.171, 0.102722, 0.133729, 0.500149) ·M =

(0.185374, 0.0855, 0.136922, 0.500004)



Reachability/Invariance/Approximation in Markov Chains

M: Markov chain over states s1, . . . , sk

Is it the case, say, that starting in state s1, ultimately I am in
state sk with probability at least 1/2 ?

Does there exist T such that, for all n ≥ T
Prob(‘being in sk after n steps’) ≥ 1/2 ?

Markov Chain Problem

Instance: 〈 stochastic matrix M; r ∈ (0, 1] 〉

Question: Does ∃T s.t. ∀n ≥ T , (1, 0, . . . , 0) ·Mn ·


0
...
0
1

 ≥ r ?



Positivity of Linear Recurrence Sequences

u0 = 1, u1 = 1
un+2 = un+1 + un

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, . . .

Positivity Problem

Instance: A linear recurrence sequence 〈un〉
Question: Is it the case that ∀n, un ≥ 0 ?
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Sample Decision Problems

Termination Problem for
Simple Linear Programs

Instance: 〈 a; u; M 〉 over Z
Question: Does this program terminate?

x := a;
while u · x 6= 0 do

x := M · x;

Markov Chain Problem

Instance: A stochastic matrix M over Q

Question: Does ∃T s.t. ∀n ≥ T , (1, 0, . . . , 0) ·Mn ·


0
...
0
1

 ≥ 1
2 ?

Positivity Problem for Linear Recurrence Sequences

Instance: A linear recurrence sequence 〈un〉 over Z or Q
Question: Is it the case that ∀n, un ≥ 0 ?



Linear Recurrence Sequences

Definition

A linear recurrence sequence is a sequence 〈u0, u1, u2, . . .〉 of
real numbers such that there exist k and constants a1, . . . , ak , such
that

∀n ≥ 0, un+k = a1un+k−1 + a2un+k−2 + . . .+ akun .

k is the order of the sequence



Decision Problems for Linear Recurrence Sequences

Let 〈un〉 be a linear recurrence sequence

Skolem Problem

Does ∃n such that un = 0 ?

Positivity Problem

Is it the case that ∀n, un ≥ 0 ?

(Effective) Ultimate Positivity Problem

Does ∃T such that, ∀n ≥ T , un ≥ 0 ?

Effective means T must also be provided.
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Related Work and Applications

Theoretical biology

Analysis of L-systems
Population dynamics

Software verification

Termination of linear programs

Probabilistic model checking

Reachability, invariance, and approximation in Markov chains
Stochastic logics

Quantum computing

Threshold problems for quantum automata

Economics

Combinatorics

Discrete linear dynamical systems

Statistical physics

. . .



The Skolem Problem

Skolem Problem

Does ∃n such that un = 0 ?

Open for about 80 years!

“It is faintly outrageous that this
problem is still open; it is saying that we
do not know how to decide the Halting

Problem even for ‘linear’ automata!”

Terence Tao

“. . . a mathematical embarrassment . . . ”

Richard Lipton
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The Skolem-Mahler-Lech Theorem

Theorem (Skolem 1934; Mahler 1935, 1956; Lech 1953)

The set of zeros of a linear recurrence sequence is semi-linear:

{n : un = 0} = F ∪ A1 ∪ . . . ∪ A`

where F is finite and each Ai is a full arithmetic progression.

All known proofs make essential use of p-adic techniques

Theorem (Berstel and Mignotte 1976)

In Skolem-Mahler-Lech, the infinite part (arithmetic progressions
A1, . . . , A`) is fully effective.
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The Skolem Problem at Low Orders

Skolem Problem

Does ∃n such that un = 0 ?

Let un be a linear recurrence sequence of fixed order

Theorem (folklore)

For orders 1 and 2, Skolem is decidable.

Theorem (Mignotte, Shorey, Tijdeman 1984; Vereshchagin 1985)

For orders 3 and 4, Skolem is decidable.

Critical ingredient is Baker’s theorem for
linear forms in logarithms, which earned
Baker the Fields Medal in 1970.
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The Skolem Problem at Low Orders

Skolem Problem

Does ∃n such that un = 0 ?

Let un be a linear recurrence sequence of fixed order

Theorem (folklore)

For orders 1 and 2, Skolem is decidable.

Theorem (Mignotte, Shorey, Tijdeman 1984; Vereshchagin 1985)

For orders 3 and 4, Skolem is decidable.

Decidability for order 5 was announced in 2005 by four Finnish
mathematicians in a technical report (as yet unpublished). Their
proof appears to have a serious gap.



The Positivity and Ultimate Positivity Problems

Positivity and Ultimate Positivity open since at least 1970s

“In our estimation, these will be very difficult problems.”

Matti Soittola

Theorem (folklore)

Decidability of Positivity ⇒ decidability of Skolem.
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The Positivity and Ultimate Positivity Problems

Theorem (Burke, Webb 1981)

For order 2, Ultimate Positivity is decidable.

Theorem (Nagasaka, Shiue 1990)

For order 3 with repeated roots, Ultimate Positivity is decidable.

Theorem (Halava, Harju, Hirvensalo 2006)

For order 2, Positivity is decidable.

Theorem (Laohakosol and Tangsupphathawat 2009)

For order 3, Positivity and Ultimate Positivity are decidable.

In Colloquium Mathematicum 128:1 (2012), Tangsupphathawat,
Punnim, and Laohakosol claimed decidability of Positivity and
Ultimate Positivity for order 4 (and noted being stuck for order 5).
Unfortunately, their proof contains a major error.
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Our Main Results (I)

Theorem

Positivity is decidable for order 5 or less.

The complexity is in coNPPPPPPP

.

Effective Ultimate Positivity is decidable for order 5 or less.
The complexity is in P.

At order 6, for both Positivity and Ultimate Positivity,
proof of decidability would entail major breakthroughs in
analytic number theory (Diophantine approximation of
transcendental numbers).

In the simple case, Positivity and Effective Ultimate Positivity
are decidable for order 9 or less.

Complexity in coNPPPPPPP

and P resp.
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Our Main Results (II)

Theorem

In the simple case, Positivity and Effective Ultimate Positivity are
decidable for order 9 or less.

Theorem (ineffective version)

In the simple case, Ultimate Positivity is decidable for ALL orders.

For each fixed order k, complexity is in P (depends on k).

In the general case, complexity is in PSPACE and co∃R-hard.
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Known Unknowns

“There are things that we know we don’t know. . . ”

Donald Rumsfeld



Diophantine Approximation

How well can one approximate a real number x with rationals?∣∣∣∣x − p

q

∣∣∣∣

Theorem (Dirichlet 1842)

There are infinitely many integers p, q such that

∣∣∣∣x − p

q

∣∣∣∣ < 1

q2
.

Theorem (Hurwitz 1891)

There are infinitely many integers p, q such that

∣∣∣∣x − p

q

∣∣∣∣ < 1√
5q2

.

Moreover, 1√
5

is the best possible constant that will work for all

real numbers x.
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Diophantine Approximation

Definition

Let x ∈ R. The Lagrange constant L∞(x) is:

L∞(x) = inf

{
c :

∣∣∣∣x − p

q

∣∣∣∣ < c

q2
has infinitely many solutions

}
.

L∞(x) is closely related to the continued fraction
expansion of x

Almost all reals x have L∞(x) = 0 [Khinchin 1926]

However if x is a real algebraic number of degree 2,
L∞(x) 6= 0 [Euler, Lagrange]

All transcendental numbers x have 0 ≤ L∞(x) ≤ 1/3
[Markov 1879]

Almost nothing else is known about any specific
irrational number!
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Hardness

Let T = {θ ∈ (0, 1) : e2πiθ ∈ Q(i)} \ {14 ,
1
2 ,

3
4}

e
2 θπi

2 πθ

a+bi =

T is a countable set of transcendental numbers
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Hardness

Recall that a real number θ is computable if there is an
algorithm which, given any rational ε > 0, returns some r ∈ Q
with |θ − r | < ε.

Theorem

Suppose that Ultimate Positivity is decidable for integer linear
recurrence sequences of order 6. Then for any θ ∈ T ,
L∞(θ) is computable.

Several additional results hold (notably relating to the
computability of inhomogeneous Diophantine approximation
constants), and likewise for Positivity . . .
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Main Tools and Techniques

Algebraic and analytic number theory, Diophantine geometry

p-adic techniques
Baker’s theorem on linear forms in logarithms
Kronecker’s theorem on simultaneous Diophantine
approximation
Masser’s results on multiplicative relationships
among algebraic numbers
Schmidt’s Subspace theorem and
Schlickewei’s p-adic extension
Sums of S-units techniques
Gelfond-Schneider theorem
Other Diophantine geometry and approximation techniques

Real algebraic geometry

Decidability and fined-grained complexity of
first-order theory of the reals (Renegar)



Termination of Linear Programs Again

x ∈ A;
while x ∈ B do

x := M · x;

Question: Does this program terminate for all x ∈ A?

Ambient space: Zn, Qn, Rn, . . .

A, B: semi-linear (or even algebraic for Q and R?)

Decidability?

Complexity?

Synthesis problems: e.g., can we compute largest A such that
program terminates for all x ∈ A?



Termination of Linear Programs Again

x ∈ A;
while x ∈ B do

x := M · x;

Question: Does this program terminate for all x ∈ A?

Ambient space: Zn, Qn, Rn, . . .

A, B: semi-linear (or even algebraic for Q and R?)

Decidability?

Complexity?

Synthesis problems: e.g., can we compute largest A such that
program terminates for all x ∈ A?



Termination of Linear Programs Again

x ∈ A;
while x ∈ B do

x := M · x;

Question: Does this program terminate for all x ∈ A?

Ambient space: Zn, Qn, Rn, . . .

A, B: semi-linear (or even algebraic for Q and R?)

Decidability?

Complexity?

Synthesis problems: e.g., can we compute largest A such that
program terminates for all x ∈ A?



Termination of Linear Programs Again

x ∈ A;
while x ∈ B do

x := M · x;

Question: Does this program terminate for all x ∈ A?

Ambient space: Zn, Qn, Rn, . . .

A, B: semi-linear (or even algebraic for Q and R?)

Decidability?

Complexity?

Synthesis problems: e.g., can we compute largest A such that
program terminates for all x ∈ A?



Discrete Linear Dynamical Systems

Definition

A discrete linear dynamical systems consists of a linear
transformation M on a finite-dimensional vector space V .

Typically V = Rn or Qn



Decision Problems for Linear Dynamical Systems

Definition

Given a vector v ∈ V , the orbit of v under M is

OM(v) = 〈v,Mv,M2v,M3v, . . .〉 .

Is OM(v) periodic? Bounded? Divergent to ∞?

Is OM(v) ⊆ B for all/some v ∈ A? What about ultimately?

Does OM(v) hit B infinitely often for all/some v ∈ A?

. . .

Synthesis: Can we compute the largest/least/some A/B/M
such that . . . ?

A, B: semi-linear/algebraic/ . . .

Decidability?

Complexity?

. . .
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From LRS to Linear Dynamical Systems

v =


a0
b0

c0
d0



OM(v) = 〈v,Mv,M2v, . . . ,Mjv, . . .〉

= 〈


a0
b0

c0
d0

 ,


a1
b1

c1
d1

 ,


a2
b2

c2
d2

 , . . . ,


aj
bj

cj
dj

 , . . .〉

〈b0, b1, b2, . . . , bj , . . .〉 is an LRS of order n (here n = 4)
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Linear Dynamical Systems: Specification and Verification

A fresh look at an old area

Lots of challenging problems

Lots of interesting maths

Many connections to variety of other fields


