

Uniform Interpolation of \mathcal{ALC} -Ontologies Using Fixpoints

Patrick Koopmann and Renate A. Schmidt

Uniform Interpolation

- Restrict TBox ${\mathcal T}$ to signature Σ
- Preserve logical entailments in $\boldsymbol{\Sigma}$
- Dual notion: Forgetting

Applications

- Ontology Reuse
- Hide Confidential Concepts
- Obfuscate Ontologies
- Exhibit Hidden Relations
- Compute Logical Difference of Ontologies

Known Challenges

- \bullet Uniform Interpolants in \mathcal{ALC}
 - Not always finitely representable in \mathcal{ALC}

- Worst-case size of result triple-exponential w.r.t input

Known Challenges

- \bullet Uniform Interpolants in \mathcal{ALC}
 - Not always finitely representable in \mathcal{ALC}

- Worst-case size of result triple-exponential w.r.t input

 \Rightarrow New method to meet these challenges

Our Approach

- Use fixpoint operators
 - Ensures finite representations

$$- \mathcal{T} = \{A \sqsubseteq B, B \sqsubseteq \exists r.B\}, \Sigma = \{A, r\} \\ - \mathcal{T}^{\Sigma} = \{A \sqsubseteq \nu X. \exists r.X\}$$

- Resolution-based approach
 - Allows for focused elimination of symbols
- First method using fixpoints
- Experiments show feasibility on a lot of real-life ontologies

Syntax

 $\mathcal{ALC}\mu$ -concepts:

$$\begin{array}{c|c} A \mid \neg C \mid C \sqcup D \mid C \sqcap D \mid \exists r.C \mid \forall r.C \mid \\ \mu X.C[X] \mid \nu X.C[X] \end{array}$$

Semantics

- *ALC*-connectives and TBox statements are interpreted as usual.
- We only make use of greatest fixpoints ($\nu X.C$)

Fixpoint semantics

$$\begin{aligned} (\nu X.C)^{\mathcal{I},\mathcal{V}} &:= \bigcup \{ W \subseteq \Delta^{\mathcal{I}} \mid W \subseteq C^{\mathcal{I},\mathcal{V}[X \mapsto W]} \} \\ (\mu X.C)^{\mathcal{I},\mathcal{V}} &:= \bigcap \{ W \subseteq \Delta^{\mathcal{I}} \mid C^{\mathcal{I},\mathcal{V}[X \mapsto W]} \subseteq W \} \end{aligned}$$

Uniform Interpolation

Uniform Interpolants

Given TBox ${\mathcal T}$ and signature $\Sigma,$ we have

1.
$$sig(\mathcal{T}^{\Sigma}) \subseteq \Sigma$$

2. $\mathcal{T}^{\Sigma} \models C \sqsubseteq D$ iff $\mathcal{T} \models C \sqsubseteq D$
for $sig(C \sqsubset D) \subset \Sigma$

Uniform Interpolation

Uniform Interpolants

```
Given TBox {\mathcal T} and signature \Sigma, we have
```

1.
$$sig(\mathcal{T}^{\Sigma}) \subseteq \Sigma$$

2. $\mathcal{T}^{\Sigma} \models C \sqsubseteq D$ iff $\mathcal{T} \models C \sqsubseteq D$,
for $sig(C \sqsubseteq D) \subseteq \Sigma$

• This work concentrates on eliminating *concept symbols*

Overview of the Method

- 1. Clausify input
- 2. For every $B \in sig(\mathcal{T}) \setminus \Sigma$:
 - − Eliminate B using resolution based approach
 ⇒ Introduces new concept symbols
- 3. For every introduced concept symbol D:
 - Eliminate D by applying Ackermann's Lemma
 - \Rightarrow May introduce fixpoint operators

Overview of the Method

- 1. Clausify input
- 2. For every $B \in sig(\mathcal{T}) \setminus \Sigma$:
 - − Eliminate B using resolution based approach
 ⇒ Introduces new concept symbols
- 3. For every introduced concept symbol *D*:
 - Eliminate D by applying Ackermann's Lemma
 - \Rightarrow May introduce fixpoint operators

Clausification

 \mathcal{ALC} -Clause

 $\top \sqsubseteq L_1 \sqcup \ldots \sqcup L_n$ $L_i: \mathcal{ALC}\text{-literal}$

 \mathcal{ALC} -Literal $A \mid \neg A \mid \exists r.D \mid \forall r.D$ A: any concept symbol, D: definer symbol

- Transformation using structural transformation $- C_1 \sqcup \exists r. C_2 \Longrightarrow C_1 \sqcup \exists r. D, \neg D \sqcup C_2 (D \sqsubseteq C_2)$
- $\neg D$ marks *context* of clause in role structure.
- Clauses are represented as sets

Overview of the Method

- 1. Clausify input
- 2. For every $B \in sig(\mathcal{T}) \setminus \Sigma$:
 - Eliminate *B* using resolution based approach \Rightarrow Introduces new concept symbols
- 3. For every introduced concept symbol D:
 - Eliminate ${\it D}$ by applying Ackermann's Lemma
 - \Rightarrow May introduce fixpoint operators

Eliminating Concept Symbol

- Based on new calculus deciding $\mathcal{ALC}\text{-satisfiability}$
- Restrict rules to compute inferences on selected symbol *B*
 - \Rightarrow Clauses containing *B* can safely be removed

Central Rules of the Calculus

Resolution		Role Propagation	
$C_1 \sqcup A$	$C_2 \sqcup \neg A$	$C_1 \sqcup \forall r.D_1$	$C_2 \sqcup Qr.D_2$
$C_1 \sqcup C_2$		$C_1 \sqcup C_2 \sqcup Qr.D_3$	

- $Q \in \{\forall, \exists\}$
- D_3 is a possibly new definer representing $D_1 \sqcap D_2$
- Side condition: $C_1 \sqcup C_2$ does not contain more than one negative definer literal
 - Ensure back-translatability
 - Function of role propagation: combine contexts to make resolution possible

Introduction of Definers

- New definer $D_3 \sqsubseteq D_1 \sqcap D_2$:
 - Check whether such definer already exists
 - Add $\neg D_3 \sqcup D_1$, $\neg D_3 \sqcup D_2$ otherwise
- Number of introduced definers can be limited by $O(2^n)$
- Limits number of derived clauses to $O(2^{2^n})$

Central Rules of the Calculus

Resolution		Role Propagation	
$C_1 \sqcup A$	$C_2 \sqcup \neg A$	$C_1 \sqcup \forall r.D_1$	$C_2 \sqcup Qr.D_2$
$C_1 \sqcup C_2$		$C_1 \sqcup C_2 \sqcup Qr.D_3$	

- $Q \in \{\forall, \exists\}$
- D_3 is a possibly new definer representing $D_1 \sqcap D_2$
- Side condition: $C_1 \sqcup C_2$ does not contain more than one negative definer literal
 - Ensure back-translatability
 - Function of role propagation: combine contexts to make resolution possible

Example TBox \mathcal{T} $A \sqsubseteq \forall r. B$ $C \sqsubseteq \exists r. (A \sqcup \neg B)$ *clauses*(\mathcal{T}) 1. $\neg A \sqcup \forall r. D_2$ 2. $\neg D_2 \sqcup B$ 3. $\neg C \sqcup \exists r. D_3$ 4. $\neg D_3 \sqcup A \sqcup \neg B$

 $clauses(\mathcal{T})$

1. $\neg A \sqcup \forall r.D_2$ 3. $\neg C \sqcup \exists r.D_3$ $2. \neg D_2 \sqcup B$ $4. \neg D_3 \sqcup A \sqcup \neg B$

5. ¬ <i>A</i> ⊔ ¬ <i>C</i> ⊔ ∃ <i>r.D</i> ₄	ro
6. ¬D₄ ⊔ D₂	D_4
7. ¬D₄ ⊔ D₃	D_4

role propagation on 1, 3 $D_4 \sqsubseteq D_2$ $D_4 \sqsubseteq D_3$

 $clauses(\mathcal{T})$

1. $\neg A \sqcup \forall r.D_2$ 3. $\neg C \sqcup \exists r.D_3$ ¬D₂ ⊔ B
 ¬D₃ ⊔ A ⊔ ¬B

5. $\neg A \sqcup \neg C \sqcup \exists r.D_4$ 6. $\neg D_4 \sqcup D_2$ 7. $\neg D_4 \sqcup D_3$ 8. $\neg D_4 \sqcup B$ 9. $\neg D_4 \sqcup A \sqcup \neg B$ role propagation on 1, 3 $D_4 \sqsubseteq D_2$ $D_4 \sqsubseteq D_3$ resolution on 6, 2 resolution on 7, 4

 $clauses(\mathcal{T})$

1. $\neg A \sqcup \forall r.D_2$ 3. $\neg C \sqcup \exists r.D_3$

 $2. \neg D_2 \sqcup B$ $4. \neg D_3 \sqcup A \sqcup \neg B$

5. $\neg A \sqcup \neg C \sqcup \exists r.D_4$ 6. $\neg D_4 \sqcup D_2$ 7. $\neg D_4 \sqcup D_3$ 8. $\neg D_4 \sqcup B$ 9. $\neg D_4 \sqcup A \sqcup \neg B$ 10. $\neg D_4 \sqcup A$ role propagation on 1, 3 $D_4 \sqsubseteq D_2$ $D_4 \sqsubseteq D_3$ resolution on 6, 2 resolution on 7, 4 resoluton on 8, 9

Rules of Calculus

Resolution	Role Propagation			
$\frac{C_1 \sqcup A \qquad C_2 \sqcup \neg A}{C_1 \sqcup C_2}$	$\frac{C_1 \sqcup \forall r.D_1 \qquad C_2 \sqcup Qr.D_2}{C_1 \sqcup C_2 \sqcup Qr.D_3}$			
Existential Role Restriction Elimination				
$C \sqcup \exists R.D \neg D$				
	С			

Theorem: Rules form refutational sound and complete calculus deciding \mathcal{ALC} -TBox satisfiability

The Calculus

- Method for eliminating *B*:
 - Only resolve on definer symbols and B
 - Saturate
 - Remove clauses containing B
 - Remove clauses of form $\neg D_i \sqcup D_j$
- Resulting clause set preserves all consequences not using ${\cal B}$
- Maximally $O(2^{2^n})$ clauses are derived

Overview of the Method

- 1. Clausify input
- 2. For every $B \in sig(\mathcal{T}) \setminus \Sigma$:
 - − Eliminate B using resolution based approach
 ⇒ Introduces new concept symbols

3. For every introduced concept symbol D:

- Eliminate D by applying Ackermann's Lemma
 - \Rightarrow May introduce fixpoint operators

Elimination of Definer Symbols

- Replace remaining definers by \top
- Apply simplifications

How Practical is The Method?

- Implemented using further optimisations
- Evaluated on *ALC*-fragments of around 200 ontologies from the BioPortal repository
- Computed uniform interpolants over small signatures (5 150 symbols)
 - up to 187,514 thousand concept symbols
 - average: around 5,728
 - \Rightarrow Eliminate most concept symbols
- Results suggest that in most cases, computing uniform interpolants is feasible

Experimental Results: Duration

- 3,739 runs were performed
- 8% of runs took longer than 1,000 second timeout

Experimental Results: Size

- 90.1% smaller than input
- Fixpoints in 20.1% of cases

Conclusion

- Method to compute uniform interpolants of \mathcal{ALC} TBoxes
- Use fixpoints to represent uniform interpolants finitely
- Combines resolution-based approach with rules based on Ackermann's Lemma
- Experiments suggest practicality in a lot of cases
- Future work
 - Minimal use of fixpoint operators
 - More expressive description logics

Further Information

For more details about the experiments and for the implementation check

http://www.cs.man.ac.uk/~koopmanp/womo_experiments