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Motivation

Consider the following two theories:

E1: f (g(u, x), g(v, y)) ≈ g(f (u, v), f (x, y))

Undecidable unification problem∗

E2: f (f (x, y), f (x, y)) ≈ f (x, y)

Decidable unification problem

Can be shown by forward closure

∗ S. Anantharaman, et al. “Unification modulo Synchronous Distributivity.”
2012.
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Introduction



Terms

Purely syntactic

Composed of. . .

Constants:
t1 = a

Variables:
t2 = x

Function Symbols:
t3 = g(a, f (x))

t3 = g

a f

x

t3
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Rewriting

Rewrite Rule: t1 → t2

Rewrite System: Set of rewrite rules

Example (Associativity)

f (x, f (y, z)) −→ f (f (x, y), z)

f

x f

y z

−→

f

f

x y

z
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Convergence

Confluence:
s

t1 t2

u

∗ ∗

∗ ∗

Termination: No infinite descending chain

t0 → t1 → t2 → · · ·

Confluence + Termination = Convergence
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Equational Unification

Unification modulo a set of axioms E

Given a set of equations EQ = { s1
?= t1, . . . , sn

?= tn }

Substitution σ is an E-unifier of EQ iff:

σ(s1) ≈E σ(t1) ∧ · · · ∧ σ(sn) ≈E σ(tn)

7
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Motivation



Motivation

Equational unification has lots of applications:

Automated reasoning

Programming languages (e.g., Maude)

Protocol analysis (e.g., Maude-NPA)

But equational unification is undecidable in general

Even when restricted to “nice” theories

9
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Motivation

How to identify decidable cases?

Two important syntactic approaches:

Basic Syntactic Mutation∗

The Finite Variant Property†

Forward closure unifies these approaches.

∗ C. Lynch and B. Morawska. “Basic Syntactic Mutation.” 2002.
† H. Comon-Lundh and S. Delaune. “The finite variant property: How to get

rid of some algebraic properties.” 2005.
10
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Forward Closure

Extension of work by Hermann on chain properties∗

Compress rewriting steps

New rules capture chains of original rules

∗ M. Hermann. “Chain Properties of Rule Closures.” 1990.
12



Overlap

Overlap two rules and get a new rule

General idea:

If t1
ε−−−→

ρ1
t2

p−−−→
ρ2

t3 then t1
ε−−−−−−−→

ρ1 p ρ2
t3

13



Overlap

To compute ρ1  p ρ2 for p ∈ FPos(r1):

ρ1 : l1
−→ r1

ρ2 : l2
−→ r2

14



Overlap

To compute ρ1  p ρ2 for p ∈ FPos(r1):

ρ1 : l1
−→

p

r1|p

ρ2 : l2
−→ r2
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Overlap

θ = mgu( r1|p
?=

l2
)

15



Overlap

ρ1  p ρ2 :
θ(l1)

−→
θ(r1[r2]p)

16



Overlap

ρ1  p ρ2 :
θ(l1)

−→

p

θ(r2)

16



Overlap

Example

ρ1 : f (g(u1, x1), g(v1, y1))→ g(f (u1, v1), f (x1, y1))
ρ2 : f (g(u2, x2), g(v2, y2))→ g(f (u2, v2), f (x2, y2))

θ : {u1 7→ g(u2, x2), v1 7→ g(v2, y2)}

ρ1  1 ρ2 : f (g(g(u2, x2), x1), g(g(v2, y2), y1))
→ g(g(f (u2, v2), f (x2, y2)), f (x1, y1))

17



Overlap

Example

ρ1 : f (g(u1, x1), g(v1, y1))→ g(f (u1, v1), f (x1, y1))
ρ2 : f (g(u2, x2), g(v2, y2))→ g(f (u2, v2), f (x2, y2))

θ : {u1 7→ g(u2, x2), v1 7→ g(v2, y2)}

ρ1  1 ρ2 :

f (g(g(u2, x2), x1), g(g(v2, y2), y1))
→ g(g(f (u2, v2), f (x2, y2)), f (x1, y1))

17



Overlap

Example

ρ1 : f (g(u1, x1), g(v1, y1))→ g(f (u1, v1), f (x1, y1))
ρ2 : f (g(u2, x2), g(v2, y2))→ g(f (u2, v2), f (x2, y2))

θ : {u1 7→ g(u2, x2), v1 7→ g(v2, y2)}

ρ1  1 ρ2 :

f (g(g(u2, x2), x1), g(g(v2, y2), y1))
→ g(g(f (u2, v2), f (x2, y2)), f (x1, y1))

17



Overlap

Example

ρ1 : f (g(u1, x1), g(v1, y1))→ g(f (u1, v1), f (x1, y1))
ρ2 : f (g(u2, x2), g(v2, y2))→ g(f (u2, v2), f (x2, y2))

θ : {u1 7→ g(u2, x2), v1 7→ g(v2, y2)}

ρ1  1 ρ2 : f (g(g(u2, x2), x1), g(g(v2, y2), y1))
→ g(g(f (u2, v2), f (x2, y2)), f (x1, y1))

17



Overlap

Example

ρ1 : f (g(u1, x1), g(v1, y1))→ g(f (u1, v1), f (x1, y1))
ρ2 : f (g(u2, x2), g(v2, y2))→ g(f (u2, v2), f (x2, y2))

θ : {u1 7→ g(u2, x2), v1 7→ g(v2, y2)}

ρ1  1 ρ2 : f (g(g(u2, x2), x1), g(g(v2, y2), y1))
→ g(g(f (u2, v2), f (x2, y2)), f (x1, y1))

17



Overlap

Example

ρ1 : f (g(u1, x1), g(v1, y1))→ g(f (u1, v1), f (x1, y1))
ρ2 : f (g(u2, x2), g(v2, y2))→ g(f (u2, v2), f (x2, y2))

θ : {u1 7→ g(u2, x2), v1 7→ g(v2, y2)}

ρ1  1 ρ2 : f (g(g(u2, x2), x1), g(g(v2, y2), y1))
→ g(g(f (u2, v2), f (x2, y2)), f (x1, y1))

17



Redundancy

Not all overlaps are added to the forward closure.

A rule l → r is redundant in a rewrite system R iff:

l → r is an instance of a more general rule in R, or

Every ground instance of l ≈ r can be proven by smaller
ground instances of rules in R

l r

t
R
∗

R
∗
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Computing Forward Closure

Start with a rewrite system R

Overlap each rule in R with each rule in R

Throw out redundant rules

Call this FC 1(R)

19
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Computing Forward Closure

Start with a rewrite system FC k(R)

Overlap each rule in FC k(R) with each rule in R

Throw out redundant rules

Call this FC k+1(R)
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Computing Forward Closure

Finally, FC (R) =
⋃

k≥0
FC k(R)

If FC k(R) = FC k+1(R) for some k, FC (R) is finite

Otherwise, FC (R) is infinite

20
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Forward Closure

A term t is an innermost redex of R if it can only be rewritten
by R at the root.

Key Idea: In FC (R), every innermost redex of R can be
rewritten to its normal form in one step.

21
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Equivalence of FC and the FVP



Forward Closure and the Finite Variant Property

We show that a system has a finite forward closure if and only if it
has the finite variant property.

23



Finite Variant Property

The variants of t are all pairs (t ′, θ) such that:

θ is a normalized substitution

θ(t)→! t′

Variants capture the idea of rewriting to normal form

Finite Variant Property: Every term has a finite set of most
general variants

24



Equivalence of FC and the FVP

FVP FC

BP IR-BP

25



Boundedness Property

Bound on the lengths of rewrite chains

For each term t there is a bound #(t) such that

(θ↓)(t) ≤#(t)−−−−−−→ θ(t)↓

26



Equivalence of FC and the FVP

FVP FC

BP IR-BP
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IR-Boundedness Property

Bound on the lengths of rewrite chains from the root

There is a global bound n such that, if a term t is an
innermost redex, then t ≤n−−−→ t↓.

28



Equivalence of FC and the FVP

FVP FC

BP IR-BP

29



Boundedness ⇒ IR-Boundedness

t −→ t↓

Suppose t is an innermost redex

Then

Where θ = {x1 7→ t1, . . . , xn 7→ tn} is normalized

And tf = f (x1, . . . , xn)

Let n = max{#(tf ) | f ∈ Σ}

30
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IR-Boundedness ⇒ Boundedness

t ≤#(t)−−−−−−→ t↓

#(t) =

n + n + n + n + · · ·
+ n
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IR-Boundedness ⇒ Boundedness

t ≤#(t)−−−−−−→ t↓

#(t) = n · |FPos(t)|

31



IR-Boundedness ⇒ Boundedness

(θ↓)(t) ≤#(t)−−−−−−→ θ(t)↓

#(t) = n · |FPos(t)|

31



IR-Boundedness ⇒ Boundedness

(θ↓)(t) ≤#(t)−−−−−−→ θ(t)↓

#(t) = n · |FPos(t)|

31



Equivalence of FC and the FVP

FVP FC

BP IR-BP
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Equivalence of FC and the FVP

FVP FC

BP IR-BP
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Section 5

Undecidability of FC



Undecidability of Finiteness of Forward Closure

Reduction from the Uniform Mortality Problem for
deterministic Turing machines

Start with a Turing machine M

Create a rewrite system RM

FC (RM ) is finite iff M is uniformly mortal

34



Uniform Mortality Problem

· · · 1 0 1 1 0 1 0 · · ·

q

Given a deterministic Turing
machine

Does every configuration halt in
k or fewer steps (for some k)?

Undecidable∗

∗ G.G. Hillebrand, et al. “Undecidable Boundedness Problems for Datalog Pro-
grams.” 1995.

35



Undecidability of Finiteness of Forward Closure

Reduction from the Uniform Mortality Problem for
deterministic Turing machines
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Section 6

Modularity of FC



Modularity

Given rewrite systems R1 and R2, when does the following
condition hold?

|FC (R1)|+ |FC (R2)| <∞ =⇒ |FC (R1 ∪ R2)| <∞

We consider conditions on the signatures of R1 and R2.

38



Modularity for Disjoint Systems

If R1 and R2 are rewrite systems with disjoint signatures

Then FC (R1) ∪ FC (R2) = FC (R1 ∪ R2).

39



Shared Constants

If R1 and R2 share constants

Then FC (R1 ∪ R2) may be infinite even if FC (R1) and
FC (R2) are finite.

Example

R1 := {f (a, h(x))→ h(f (b, x))} R2 := {b → a}

f (a, h(x))→ h(f (a, x)) ∈ FC (R1 ∪ R2)

40
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Summary of Results

Finiteness of forward closure is equivalent to the finite variant
property

Finiteness of forward closure is undecidable

Having the finite variant property is undecidable

Finiteness of forward closure is preserved by union if the
signatures are disjoint, but not if they share constants.
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Future Work

Forward closure modulo theory

More detailed modularity results
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Thank You
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